Skip to main content
Content Type
Author or Institution as Author
Berhanu F. Alemaw, Timothy Simalenga
Date of publication
Edition or Version
1.00
Institution
American Journal of Climate Change
File format
Language
Gender marker
Youth marker
Description/Abstract

Improving agricultural water productivity, under rainfed or irrigated conditions, holds significant scope for addressing climate change vulnerability. It also offers adaptation capacity needs as well as water and food security in the southern African region. In this study, evidence for climate change impacts and adaptation strategies in rainfed agricultural systems is explored through modeling predictions of crop yield, soil moisture and excess water for potential harvesting. The study specifically presents the results of climate change impacts under rainfed conditions for ma- ize, sorghum and sunflower using soil-water-crop model simulations, integrated based on daily inputs of rainfall and evapotranspiration disaggregated from GCM scenarios. The research targets a vast farming region dominated by heavy clay soils where rainfed agriculture is a dominant prac- tice. The potential for improving soil water productivity and improved water harvesting have been explored as ways of climate change mitigation and adaptation measures. This can be utilized to explore and design appropriate conservation agriculture and adaptation practices in similar agro-ecological environments, and create opportunities for outscaling for much wider areas. The results of this study can suggest the need for possible policy refinements towards reducing vulne- rability and adaptation to climate change in rainfed farming systems.

Keywords
Climate Change, Adaptation, Rainfed Farming Systems, A Modeling, Climate Smart Agriculture, Southern Africa
Contact institution (for further information)
American Journal of Climate Change
Citation

Alemaw, B. and Simalenga, T. (2015) Climate Change Impacts and Adaptation in Rainfed Farming Systems: A Modeling Framework for Scaling-Out Climate Smart Agriculture in Sub-Saharan Africa. American Journal of Climate Change, 4, 313-329. doi: 10.4236/ajcc.2015.44025.

CCARDESA Category

Funding Partners

4.61M

Beneficiaries Reached

97000

Farmers Trained

3720

Number of Value Chain Actors Accessing CSA

41300

Lead Farmers Supported